Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract We introduce a new concept of the local flux conservation and investigate its role in the coupled flow and transports. We demonstrate how the proposed concept of the locally conservative flux can play a crucial role in obtaining the$$L^2$$ norm stability of the discontinuous Galerkin finite element scheme for the transport in the coupled system with flow. In particular, the lowest order discontinuous Galerkin finite element for the transport is shown to inherit the positivity and maximum principle when the locally conservative flux is used, which has been elusive for many years in literature. The theoretical results established in this paper are based on the equivalence between Lesaint-Raviart discontinuous Galerkin scheme and Brezzi-Marini-Süli discontinuous Galerkin scheme for the linear hyperbolic system as well as the relationship between the Lesaint-Raviart discontinuous Galerkin scheme and the characteristic method along the streamline. Sample numerical experiments have then been performed to justify our theoretical findings.more » « less
-
Free, publicly-accessible full text available January 3, 2026
-
Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operatorsFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
